Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 80(2): 698-707, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759371

ABSTRACT

BACKGROUND: Tetranychus urticae is a hard-to-control pest of greenhouse strawberry production. Nighttime ultraviolet B (UV-B) radiation using light reflection sheets (LRS) has been applied as a physical method to control T. urticae through direct ovicidal effects (the UV method). However, because strawberry leaves grow more densely, UV-B radiation fails to reach the lower leaf surfaces inhabited by spider mites; therefore, a complementary method is required. We propose the supplemental application of phytoseiid mites in greenhouse strawberry production. We evaluated the control effects of UV-B irradiation, phytoseiid mite application and their combined use. The effects of UV-B irradiation on the degree of overlap relative to the independent distributions (ω) between predators and prey were also analyzed. RESULTS: The UV method alone maintained low T. urticae density levels from November to February; however, mite populations increased from March onward. Phytoseiid mite application in January and February without UV-B irradiation resulted in a temporary increase in spider mites in March and/or April. By contrast, combined application of the UV method and phytoseiid mites had a greater control effect during the strawberry growing season. The ω values were higher for the UV method compared with no UV-B irradiation, suggesting that UV-B irradiation increased phytoseiid mite foraging rates. CONCLUSION: The release of phytoseiid mites compensated for the shortcomings of the UV method, and UV-B irradiation promoted predation by phytoseiid mites by increasing the behavioral numerical response. Consequently, combined application of UV-B irradiation and phytoseiid mites is optimal for T. urticae control in greenhouse strawberry production. © 2023 Society of Chemical Industry.


Subject(s)
Fragaria , Tetranychidae , Animals , Tetranychidae/physiology , Plants , Ultraviolet Rays , Predatory Behavior , Pest Control, Biological/methods
2.
Exp Appl Acarol ; 90(3-4): 247-266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37470937

ABSTRACT

An incomplete species recognition system may cause reproductive interference. Interspecific mating between Panonychus citri and Panonychus osmanthi produced apparently normal F1 hybrid females. However, the F1 females laid few eggs, and the produced eggs did not hatch (suggesting hybrid breakdown). Several common host plants of P. citri and P. osmanthi have been determined, including Japanese pear, peach, and citrus. However, P. osmanthi has been found only on its particular host plants in the genus Osmanthus. To assess the potential for reproductive interference between P. citri and P. osmanthi, we evaluated the competitiveness (1 ♀ × 2 ♂♂) and preference (2 ♀♀ × 1 ♂) of males in mating and guarding behavior and assessed the effect of second mating on offspring paternity using Japanese pear leaf disks. We found that P. citri males were superior competitors. Moreover, the species recognition ability of P. citri males was lower than that of P. osmanthi males, and frequent occurrence of reproductive interference should therefore be expected. In a mixed population (2 ♀♀ × 2 ♂♂), 41% of females copulated with heterospecific males, although the mating superiority of P. citri was not proven. The ratio of effective second mating with conspecific males after heterospecific mating was higher in the crosses to P. citri females (77.8%) than P. osmanthi females (14.3%). Therefore, P. citri females had more chance than P. osmanthi females to recover from the fitness cost imposed by heterospecific mating through subsequent conspecific mating. To date, P. osmanthi has not been detected on host plants other than Osmanthus species. Reproductive interference by P. citri males may therefore narrow the range of host plants available for P. osmanthi.


Subject(s)
Citrus , Tetranychidae , Male , Female , Animals , Reproduction , Species Specificity
3.
Exp Appl Acarol ; 89(1): 1-14, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36512263

ABSTRACT

The red velvet mite, Balaustium murorum (Hermann), is a pollenophagous free-living mite with a flashy red body. This mite occurs in early spring and lives on sunny surfaces of human-made structures, such as concrete. Hence, it is inevitably exposed to a harsh environment due to solar ultraviolet-B (UV-B) radiation and radiant heat, which cause oxidative stress via the production of reactive oxygen species. The spider mite Panonychus citri that resides on upper leaf surfaces accumulates synthesized keto-carotenoids to protect against oxidative stress. Therefore, we evaluated carotenoid composition in the red pigment of B. murorum. To identify major carotenoids, we performed a high-performance liquid chromatography analysis of intact and de-esterified pigments of B. murorum females. The flashy red pigments of B. murorum consisted of the highly abundant keto-carotenoids astaxanthin and 3-hydroxyechinenone (60 and 38% of major carotenoids, respectively), and a small amount of ß-carotene (2%). Although P. citri is an astaxanthin-rich species, the astaxanthin concentration (per protein) in B. murorum is 127-fold that in P. citri. Due to their high antioxidant activities, those keto-carotenoids probably contribute to the survival of B. murorum in the harsh environment caused by solar UV-B radiation and radiant heat in inorganic habitats.


Subject(s)
Carotenoids , Xanthophylls , Female , Humans , Animals , Carotenoids/analysis , Carotenoids/metabolism , beta Carotene
4.
Pest Manag Sci ; 78(10): 4314-4323, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35731693

ABSTRACT

BACKGROUND: A spider mite control method using night-time ultraviolet (UV)-B irradiation was recently developed for strawberry greenhouses (UV method). The control effect of this UV method is negatively affected by increasing temperature. Tetranychus urticae eggs are more resistant to a single dose of UV-B irradiation than Neoseiulus californicus eggs. By contrast, N. californicus can better survive nightly UV-B irradiation with the UV method compared with T. urticae. To elucidate the mechanism underlying these phenomena, we explored the hypotheses that higher temperature promotes photoenzymatic repair (PER) and that mortality is determined by UV-B susceptibility in the embryonic stage exposed to UV-B. RESULTS: PER efficacy was not promoted by increasing temperature. The lowest hatchability (around zero) of T. urticae eggs after a single dose of UV-B irradiation (0.288 and 0.432 kJ m-2 ) without photoreactivation was seen in the morphogenesis stages between "cleavage ended" and "eye points became colored". Based on these results, we developed a linear function of daily UV-B irradiance and deviation of cumulative irradiance during vulnerable embryonic developmental phases from 50% lethal dose (LD50 ) after a single dose of UV-B irradiation. The difference between T. urticae and N. californicus and changes in UV-B vulnerability due to temperature could be explained by this simple relationship. CONCLUSION: Slower development in T. urticae than N. californicus in nature and developmental delay under low temperatures increase the ovicidal effects of the UV method. This shows the advantage of the simultaneous use of the UV method and biological control, contributing to the development of integrated pest management. © 2022 Society of Chemical Industry.


Subject(s)
Fragaria , Tetranychidae , Animals , Pest Control, Biological , Predatory Behavior , Temperature , Tetranychidae/physiology , Tick Control/methods , Ultraviolet Rays
5.
Pest Manag Sci ; 78(10): 4028-4036, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35639971

ABSTRACT

BACKGROUND: High-levels of etoxazole resistance have not yet been frequently reported in Panonychus citri. Although a highly resistant strain was discovered in 2014, etoxazole resistance has not become a significant problem in areas of citrus production in Japan. A target site mutation in chitin synthase 1 (CHS1), I1017F, is a major etoxazole-resistance factor in Tetranychus urticae. To investigate the mechanisms of etoxazole resistance and the dispersal of resistance genes, we analyzed target-site mutations in a highly resistant strain and their geographical distribution in Japan. RESULTS: High-level etoxazole resistance was completely recessive. The I1017F mutation was detected in CHS1 of the highly resistant strain, and its frequency was correlated with the hatchability of eggs treated with etoxazole. Sequencing and variant frequency analyses of local populations by quantitative polymerase chain reaction revealed that I1017F is restricted to the Ariake Sea area of Kyushu Island. Although a new nonsynonymous substitution, S1016L, accompanied by I1017F was found in CHS1 of the highly resistant strain, CRISPR/Cas9 engineering of flies showed that S1016L had no effect on the etoxazole resistance conferred by I1017F. CONCLUSION: I1017F is a major target site mutation that confers high-level etoxazole resistance on P. citri. Dispersion of I1017F possibly was suppressed as a result of the completely recessive inheritance of resistance together with low gene flow between local populations. © 2022 Society of Chemical Industry.


Subject(s)
Acaricides , Citrus , Tetranychidae , Acaricides/pharmacology , Animals , Chitin Synthase/genetics , Japan , Mutation , Oxazoles , Tetranychidae/genetics
6.
Pestic Biochem Physiol ; 181: 105000, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35082027

ABSTRACT

Pyridaben is a mitochondrial electron transport complex I inhibitor. The H110R mutation in the PSST subunit has been reported as a major factor in pyridaben resistance in the two-spotted spider mite, Tetranychus urticae. However, backcross experiments revealed that the mutant PSST alone conferred only moderate resistance. In contrast, inhibition of cytochrome P450 (CYP) markedly reduces resistance levels in a number of highly resistant strains. It was reported previously that maternal factors contributed to the inheritance of pyridaben resistance in the egg stage, but the underlying mechanisms have yet to be elucidated. Here, we studied the combined effects of the PSST H110R mutation and candidate CYPs, as metabolic resistance factors, on pyridaben resistance in T. urticae. We found that the maternal effects of inheritance of resistance in the egg stage were associated with CYP activity. Analysis of differential gene expression by RNA-seq identified CYP392A3 as a candidate causal factor for the high resistance level. Congenic strains, where the alleles of both PSST and CYP392A3 were derived from a resistant strain (RR_i; i = 1 or 2) and a susceptible strain (SS_i) in a common susceptible genetic background, were constructed by marker-assisted backcrossing. RR_i showed upregulation of CYP392A3 and high resistance levels (LC50 > 10,000 mg L-1), while SS_i had LC50 < 10 mg L-1. To disentangle the individual effects of PSST and CYP392A3 alleles, we also attempted to uncouple these genes in RR_i. We conclude that given the variation in LC50 values and expression levels of CYP392A3 in the congenic and uncoupled strains, it is likely that the high pyridaben resistance levels are due to a synergistic or cumulative effect of the combination of mutant PSST and associated CYPs, including CYP392A3, but other yet to be discovered factors cannot be excluded.


Subject(s)
Acaricides , Tetranychidae , Acaricides/pharmacology , Animals , Cytochrome P-450 Enzyme System/genetics , Mutation , Pyridazines , Tetranychidae/genetics
7.
Mol Ecol Resour ; 22(4): 1380-1393, 2022 May.
Article in English | MEDLINE | ID: mdl-34882971

ABSTRACT

PCR techniques, both quantitative (qPCR) and nonquantitative, have been used to estimate the frequency of a specific allele in a population. However, the labour required to sample numerous individuals and subsequently handle each sample renders the quantification of rare mutations (e.g., pesticide resistance gene mutations at the early stages of resistance development) challenging. Meanwhile, pooling DNA from multiple individuals as a "bulk sample" combined with qPCR may reduce handling costs. The qPCR output for a bulk sample, however, contains uncertainty owing to variations in DNA yields from each individual, in addition to measurement errors. In this study, we have developed a statistical model to estimate the frequency of the specific allele and its confidence interval when the sample allele frequencies are obtained in the form of ΔΔCq in the qPCR analyses on multiple bulk samples collected from a population. We assumed a gamma distribution as the individual DNA yield and developed an R package for parameter estimation, which was verified using real DNA samples from acaricide-resistant spider mites, as well as a numerical simulation. Our model resulted in unbiased point estimates of the allele frequency compared with simple averaging of the ΔΔCq values. The confidence intervals suggest that dividing the bulk samples into more parts will improve precision if the total number of individuals is equal; however, if the cost of PCR analysis is higher than that of sampling, increasing the total number and pooling them into a few bulk samples may also yield comparable precision.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , Alleles , DNA/genetics , Gene Frequency , Real-Time Polymerase Chain Reaction
8.
Pest Manag Sci ; 77(11): 5149-5157, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34255424

ABSTRACT

BACKGROUND: Pyflubumide and cyenopyrafen are respiratory complex II (complex II) inhibitors. Previous quantitative trait locus analyses suggested associations of I260V and S56L in complex II subunit B (B-I260V) and subunit C (C-S56L) with pyflubumide and cyenopyrafen resistance, respectively, in Tetranychus urticae. However, although resistant strains had been selected separately by these acaricides, all strains were homozygous for both B-I260V and C-S56L. Hence, the effects of each mutation on resistance development remain unclear. RESULTS: We established strains homozygous for B-I260V with C-S56 (B-I260V_I260V/C-S56_S56) and for C-S56L with B-I260 (B-I260_I260/C-S56L_S56L). High resistance levels (LC50 > 1000 mg L-1 ) to pyflubumide and cyenopyrafen was not conferred by B-I260V or C-S56L alone. Next, we prepared intermixed strains by crossing B-I260V_I260V/C-S56_S56 and B-I260_I260/C-S56L_S56L. Selection of the intermixed strains by either acaricide caused very high resistance levels (LC50 ≥ 10 000 mg L-1 ) to both acaricides and fixed both mutations. Allele-selected recoupling of the mutations without acaricide selection also conferred very high resistance levels to both acaricides in the intermixed strains. Unlike these, B-I260V or C-S56L alone conferred very high and high resistance levels to cyflumetofen, respectively. CONCLUSION: We conclude that the effect of individual mutations characteristically varies among complex II inhibitors. Moreover, very high resistance levels to pyflubumide and cyenopyrafen is conferred by the co-occurrence of B-I260V and C-S56L mutations, which alone have limited effects on resistance level.


Subject(s)
Acaricides , Tetranychidae , Acaricides/pharmacology , Acrylonitrile/analogs & derivatives , Animals , Electron Transport Complex II , Mutation , Pyrazoles , Tetranychidae/genetics
9.
Pest Manag Sci ; 77(2): 851-859, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32949092

ABSTRACT

BACKGROUND: A new physical control method using ultraviolet-B (UV-B) lamps and light-reflecting sheets (UV method) significantly suppressed a spider mite population on greenhouse strawberries. Although UV-B radiation may adversely affect the survival of phytoseiid mites, previous research has suggested that Neoseiulus californicus can improve its survival on exposure to UV-B irradiation by consuming antioxidants contained in tea and peach pollen. In this study, we evaluated strawberry pollen as an alternative food source for N. californicus and examined whether antioxidants in the pollen mitigated UV-B damage to N. californicus. RESULTS: The fecundity of N. californicus females reared on Tetranychus urticae decreased on shifting their diet to pollen. By contrast, females reared continuously on strawberry pollen produced as many eggs as females reared continuously on T. urticae. Survival and fecundity after UV-B irradiation were higher in females on the pollen diet. Oxygen radical absorbance capacity analysis revealed that the high antioxidant activity of strawberry pollen was due to four hydroxycinnamoyl spermidine derivatives. CONCLUSION: Strawberry pollen was an adequate alternative food source for N. californicus. Feeding on strawberry pollen, which contains spermidine derivatives with high antioxidant activity, mitigated UV-B damage. This shows the potential of combining the UV-method with N. californicus for controlling T. urticae in strawberries.


Subject(s)
Fragaria , Mites , Tetranychidae , Animals , Female , Pest Control, Biological , Pollen , Predatory Behavior
10.
Insect Biochem Mol Biol ; 123: 103410, 2020 08.
Article in English | MEDLINE | ID: mdl-32442626

ABSTRACT

The acaricides cyflumetofen, cyenopyrafen, and pyflubumide act as inhibitors of the mitochondrial electron transport system at complex II (succinate dehydrogenase; SDH), a new mode of action in arthropods. The development and mechanisms of low-level resistance against cyenopyrafen and cyflumetofen have been previously reported in Tetranychus urticae. In the present study, we investigated high levels of resistance against three SDH inhibitors in T. urticae field populations and clarify the genetic basis of resistance using quantitative trait locus (QTL) analysis. First, we constructed a microsatellite linkage map comprising 64 markers assembled into three linkage groups (LGs) with total length of 683.8 cM and average marker spacing of 11.03 cM. We then used the linkage map to perform QTL mapping, and identified significant QTLs contributing to resistance to cyflumetofen (one QTL on LG1), cyenopyrafen (one QTL on LG3), and pyflubumide (two QTLs on LG1 and LG3). The QTL peaks on LG1 for cyflumetofen and pyflubumide overlapped and included the SdhB locus. For cyenopyrafen resistance, the QTLs on LG3 included the SdhC locus. For cyflumetofen resistance, we found an I260T mutation in SdhB. For pyflubumide and cyenopyrafen resistance, we detected I260V and S56L substitutions in SdhB and SdhC, respectively, by direct sequencing. Both I260 in SdhB and S56 in SdhC were present in highly conserved regions of the ubiquinone binding site formed at the interface among SdhB, SdhC, and SdhD. Mutations at these positions have been implicated in resistance against fungicides that act as Sdh inhibitors in various pathogens. Therefore, we consider these mutations to be target-site resistance mutations for these acaricidal SDH inhibitors.


Subject(s)
Acaricides/pharmacology , Chromosome Mapping/methods , Drug Resistance/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Tetranychidae , Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Animals , Arthropod Proteins/antagonists & inhibitors , Arthropod Proteins/drug effects , Arthropod Proteins/metabolism , Genetic Linkage , Genome, Insect , Microsatellite Repeats , Mutation , Propionates/pharmacology , Pyrazoles/pharmacology , Quantitative Trait Loci , RNA-Seq , Succinate Dehydrogenase/drug effects , Succinate Dehydrogenase/metabolism , Tetranychidae/drug effects , Tetranychidae/genetics , Tetranychidae/metabolism
11.
Environ Entomol ; 49(4): 886-894, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32457991

ABSTRACT

Perilla, Perilla frutescens (L.) Britton var. crispa (Thunb.) H. Deane, is traditionally cultivated as an edible/medicinal crop in East Asia. Its essential oil contains many bioactive compounds that are expected to have high pharmacological functionality, as well as antimicrobial and insecticidal activity. Spider mites are a major pest group for perilla cultivation. The two-spotted spider mite, Tetranychus urticae Koch, possesses divergent detoxification enzymes and has developed resistance against most acaricides. The essential oil content of perilla halves from the pre-flowering phase to the flowering phase, and ultraviolet (UV)-B radiation generally increases defense compounds. To clarify the effects of this change in essential oil content and the effects of UV-B pretreatment, we investigated the developmental success and egg production of T. urticae on leaves from the preflowering and flowering phases cultivated with and without nighttime UV-B irradiation. Both the parameters significantly increased on leaves from the flowering phase in comparison with that from the preflowering phase, suggesting that constitutively produced essential oil provided protection against mite pests in a growth phase-specific manner. The defense system also extended the developmental period of mites on red perilla leaves, but not on green perilla leaves, in preflowering phase. Although egg production was lower on red perilla leaves pretreated with UV-B, no negative effects were caused on the developmental success and duration on red and green perilla and the egg production on green perilla by UV-B pretreatment. Our findings reveal a significant impact of investment allocation of perilla plants and a small contribution of UV-B irradiation to the plant defense system.


Subject(s)
Perilla frutescens , Perilla , Tetranychidae , Animals , Asia, Eastern , Plant Leaves
12.
Exp Appl Acarol ; 80(2): 203-214, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31912339

ABSTRACT

A novel system for spider mite control was developed with a slow-release sachet containing Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) protected by a waterproof shelter. Monitoring the efficacy of the predator release system for spider mite control at a Japanese pear greenhouse requires discrimination of N. californicus from other indigenous phytoseiid mite species inhabiting the study site and subsequent identification of the released N. californicus. The report of our earlier study described a PCR-based method for discrimination of N. californicus species. For the present study, we first examined phytoseiid mite species composition in the greenhouse. Subsequently, we developed microsatellite markers to identify the released N. californicus. Finally, we installed the predator release system in the greenhouse and conducted a population survey of phytoseiid and spider mites. Results demonstrated that approximately 1 month is necessary for distribution of the released N. californicus on the leaves.


Subject(s)
Acari/physiology , Pest Control, Biological , Pyrus/parasitology , Tetranychidae , Animals , Japan , Predatory Behavior , Tick Control
13.
Photochem Photobiol ; 96(4): 877-882, 2020 07.
Article in English | MEDLINE | ID: mdl-31886904

ABSTRACT

The two-spotted spider mite, Tetranychus urticae, is an economically important agricultural pest. A novel physical control method involving daily nighttime UV-B irradiation was recently developed for use in strawberry greenhouses. However, the overlapping of leaves after March prevents direct irradiation to T. urticae on the lower leaf surface, decreasing control effect. Excessive UV-B irradiation causes leaf sunscald in winter. Therefore, optimization of UV-B irradiance and a compensatory control agent are desired. Temperature may affect the survival of organisms exposed to UV-B, although the temperature dependence of UV-B damage is controversial. A phytoseiid mite, Neoseiulus californicus, is a prominent predator but vulnerable to a single UV-B irradiation. We compared dose-response and temperature dependence of UV-B damage between T. urticae and N. californicus eggs under daily nighttime UV-B irradiation. Unexpectedly, N. californicus showed greater resistance to UV-B than T. urticae, and the mortality was increased and decreased at low and high temperatures, respectively. This makes possible the application of UV-B doses that are lethal for spider mites but safe for phytoseiid mites. Overall, we concluded that combined use of phytoseiid mites with UV-B lamps is advantageous to spider mite management in strawberry greenhouses.


Subject(s)
Ovum , Predatory Behavior , Temperature , Tetranychidae/physiology , Ultraviolet Rays , Animals , Dose-Response Relationship, Radiation , Fragaria/parasitology , Plant Leaves/parasitology , Tetranychidae/radiation effects
14.
Proc Biol Sci ; 286(1907): 20191039, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31311468

ABSTRACT

Keto-carotenoids contribute to many important traits in animals, including vision and coloration. In a great number of animal species, keto-carotenoids are endogenously produced from carotenoids by carotenoid ketolases. Despite the ubiquity and functional importance of keto-carotenoids in animals, the underlying genetic architectures of their production have remained enigmatic. The body and eye colorations of spider mites (Arthropoda: Chelicerata) are determined by ß-carotene and keto-carotenoid derivatives. Here, we focus on a carotenoid pigment mutant of the spider mite Tetranychus kanzawai that, as shown by chromatography, lost the ability to produce keto-carotenoids. We employed bulked segregant analysis and linked the causal locus to a single narrow genomic interval. The causal mutation was fine-mapped to a minimal candidate region that held only one complete gene, the cytochrome P450 monooxygenase CYP384A1, of the CYP3 clan. Using a number of genomic approaches, we revealed that an inactivating deletion in the fourth exon of CYP384A1 caused the aberrant pigmentation. Phylogenetic analysis indicated that CYP384A1 is orthologous across mite species of the ancient Trombidiformes order where carotenoids typify eye and body coloration, suggesting a deeply conserved function of CYP384A1 as a carotenoid ketolase. Previously, CYP2J19, a cytochrome P450 of the CYP2 clan, has been identified as a carotenoid ketolase in birds and turtles. Our study shows that selection for endogenous production of keto-carotenoids led to convergent evolution, whereby cytochrome P450s were independently co-opted in vertebrate and invertebrate animal lineages.


Subject(s)
Arthropod Proteins/genetics , Carotenoids/metabolism , Cytochrome P-450 Enzyme System/genetics , Evolution, Molecular , Pigmentation/genetics , Tetranychidae/physiology , Animals , Arthropod Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Tetranychidae/genetics
15.
Environ Entomol ; 47(1): 140-147, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29186383

ABSTRACT

The application of ultraviolet-B (UVB) radiation to control spider mites is challenging as a key technology for integrated pest management (IPM) in greenhouse strawberries in Japan. To address this, concurrent use of phytoseiid mites and reduced UVB irradiance is desirable to ensure control effects in areas shaded from UVB radiation and to minimize the sunscald in winter, respectively. We designed experiments reproducing the UVB dose on the lower leaf surfaces in strawberry and evaluated the effects of intermittent UVB irradiation at midnight for practical application in the greenhouse and low temperature on the survival of the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and damage to the phytoseiid mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). The midnight intermittent UVB irradiation effectively suppressed egg hatching and development of larvae of T. urticae, and the control effect was reinforced at 20°C (no eggs hatched at 0.13 kJ m-2 d-1) rather than, at 25°C (70.8% eggs hatched). In contrast, the hatchability of N. californicus eggs was unaffected by intermittent UVB irradiation at 0.27 kJ m-2 d-1 at 25°C and 20°C. However, residual effects of UVB irradiation to N. californicus eggs on survival of hatched larvae were seen, so that reducing the UVB dose is also advantageous for this phytoseiid mite. N. californicus showed a photoreactivation capacity, whereas their UVB tolerance was improved by prey species, suggesting the possibility of the improvement of phytoseiid mites by diet. The reduction of UVB dose and concurrent use of phytoseiid mites increase reliability of the UVB method in IPM strategies in strawberry greenhouse.


Subject(s)
Cold Temperature , Predatory Behavior , Tetranychidae/physiology , Tick Control/methods , Ultraviolet Rays , Acari/physiology , Animals , Fragaria/growth & development , Pest Control, Biological , Plant Leaves/growth & development , Tetranychidae/radiation effects
16.
PLoS One ; 12(11): e0188924, 2017.
Article in English | MEDLINE | ID: mdl-29190832

ABSTRACT

Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size.


Subject(s)
Mites/physiology , Sexual Behavior, Animal , Animals , Body Size , Female , Male
18.
Environ Entomol ; 46(5): 1143-1150, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28981670

ABSTRACT

Solar ultraviolet-B (UVB) radiation and radiant heat have lethal effects on plant-dwelling mites, including spider mites, and their natural enemies, such as phytoseiid mites, leading them to reside on lower leaf surfaces. Panonychus spider mites are outcompeted by Tetranychus spider mites and thus exploit upper leaf surfaces, where they are exposed to both UVB radiation and radiant heat. Panonychus spider mites are thought to produce astaxanthin constitutionally. In this study, we compared carotenoid components, antioxidant capacity, lipid peroxidation, survival, and egg production in wild-type (WTS) and albino-type strains (ATS) of Panonychus citri (McGregor). Four carotenoids (neoxanthin, violaxanthin, lutein, and carotene) and their isomers and esters were identified in both strains, but astaxanthin and its esters were present only in WTS. The singlet oxygen scavenging capacity of lipid-soluble ingredients was greater in WTS than in ATS, whereas the oxygen radical absorbance capacities of hydrophilic ingredients were equivalent between them. Lipid peroxide accumulation was clearly higher in ATS than in WTS under both UVB irradiation (25 °C) and high temperature (35 °C) conditions. The findings are consistent with an antioxidant protective function of astaxanthin in this mite. Survival periods at 38 °C were longer in WTS than in ATS, although no difference was shown at 35 °C or under UVB irradiation. Therefore, astaxanthin accumulation was shown to be a major mechanism for survival under radiant heat, although other mechanisms, such as photoreactivation, might play a major role in survival under UVB radiation.


Subject(s)
Carotenoids/metabolism , Free Radical Scavengers/metabolism , Lipid Peroxides/metabolism , Tetranychidae/metabolism , Animals , Carotenoids/analysis , Female , Hot Temperature , Male , Oxidative Stress , Reproduction , Tetranychidae/chemistry , Tetranychidae/radiation effects , Ultraviolet Rays , Xanthophylls/analysis , Xanthophylls/metabolism
19.
Environ Entomol ; 46(6): 1448-1455, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29069313

ABSTRACT

Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.


Subject(s)
Tetranychidae/growth & development , Tetranychidae/radiation effects , Ultraviolet Rays/adverse effects , Animals , Female , Larva/growth & development , Larva/radiation effects , Mortality , Nymph/growth & development , Nymph/radiation effects
20.
Proc Natl Acad Sci U S A ; 114(29): E5871-E5880, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28674017

ABSTRACT

Carotenoids underlie many of the vibrant yellow, orange, and red colors in animals, and are involved in processes ranging from vision to protection from stresses. Most animals acquire carotenoids from their diets because de novo synthesis of carotenoids is primarily limited to plants and some bacteria and fungi. Recently, sequencing projects in aphids and adelgids, spider mites, and gall midges identified genes with homology to fungal sequences encoding de novo carotenoid biosynthetic proteins like phytoene desaturase. The finding of horizontal gene transfers of carotenoid biosynthetic genes to three arthropod lineages was unprecedented; however, the relevance of the transfers for the arthropods that acquired them has remained largely speculative, which is especially true for spider mites that feed on plant cell contents, a known source of carotenoids. Pigmentation in spider mites results solely from carotenoids. Using a combination of genetic approaches, we show that mutations in a single horizontally transferred phytoene desaturase result in complete albinism in the two-spotted spider mite, Tetranychus urticae, as well as in the citrus red mite, Panonychus citri Further, we show that phytoene desaturase activity is essential for photoperiodic induction of diapause in an overwintering strain of T. urticae, consistent with a role for this enzyme in provisioning provitamin A carotenoids required for light perception. Carotenoid biosynthetic genes of fungal origin have therefore enabled some mites to forgo dietary carotenoids, with endogenous synthesis underlying their intense pigmentation and ability to enter diapause, a key to the global distribution of major spider mite pests of agriculture.


Subject(s)
Arthropod Proteins/genetics , Carotenoids/metabolism , Diapause/physiology , Oxidoreductases/genetics , Tetranychidae/physiology , Animals , Arthropod Proteins/metabolism , Carotenoids/genetics , Diapause/genetics , Female , Gene Transfer, Horizontal , Genetic Complementation Test , Male , Mutation , Oxidoreductases/metabolism , Pigmentation/genetics , Tetranychidae/genetics , Tetranychidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...